Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PNAS Nexus ; 1(2): pgac049, 2022 May.
Article in English | MEDLINE | ID: covidwho-2237565

ABSTRACT

Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by three to four different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced coassembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.

2.
Viruses ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2216973

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) is the most transmissible ß-coronavirus in history, affecting all population groups. Immunocompromised patients, particularly cancer patients, have been highlighted as a reservoir to promote accumulation of viral mutations throughout persistent infection. CASE PRESENTATION: We aimed to describe the clinical course and SARS-CoV-2 mutation profile for 102 days in an immunocompromised patient with non-Hodgkin's lymphoma and COVID-19. We used RT-qPCR to quantify SARS-CoV-2 viral load over time and whole-virus genome sequencing to identify viral lineage and mutation profile. The patient presented with a persistent infection through 102 days while being treated with cytotoxic chemotherapy for non-Hodgkin's lymphoma and received targeted therapy for COVID-19 with remdesivir and hyperimmune plasma. All sequenced samples belonged to the BA.1.1 lineage. We detected nine amino acid substitutions in five viral genes (Nucleocapsid, ORF1a, ORF1b, ORF13a, and ORF9b), grouped in two clusters: the first cluster with amino acid substitutions only detected on days 39 and 87 of sample collection, and the second cluster with amino acid substitutions only detected on day 95 of sample collection. The Spike gene remained unchanged in all samples. Viral load was dynamic but consistent with the disease flares. CONCLUSIONS: This report shows that the multiple mutations that occur in an immunocompromised patient with persistent COVID-19 could provide information regarding viral evolution and emergence of new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Virus Shedding , Persistent Infection , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/drug therapy , Immunocompromised Host
3.
J Infect Public Health ; 15(11): 1234-1258, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2069347

ABSTRACT

PURPOSE: The recent Omicron (B.1.1.529) variant poses a significant threat to global health. This variant has spread worldwide, and several sublineages have rapidly emerged. Study tried to analyze the microevolution of this variant. METHODS: We studied the molecular phylogenetics, divergence, geographical distributions, frequencies, risk mutations for antibody affinity, and mutational landscape for Omicron sublineages using in silico analysis and statistical models. The risk mutation of spike for nAb affinity was analyzed and illustrated by statistical plots. Finally, the mutational properties of the spike mutations and their stability were predicted and demonstrated. RESULTS: First, we studied the microevolutionary Omicron sublineages using molecular phylogenetics. Simultaneously, we revealed divergence events of the Omicron sublineages and observed the lowest minimum divergence of 51 in clade 21K and the highest maximum divergence of 90 in clade 21L. We have demonstrated cluster analyses, geographical distributions, frequencies of Omicron and its sublineages. Finally, we evaluated the mutational landscape of the Omicron sublineages. In this mutational study, we performed a genome-wide analysis of general mutations, mutations in the non-spike genome, and spike mutations of Omicron sublineages. The risk mutation of S-glycoprotein for nAb affinity has been analyzed for Omicron sublineages. Here, we found that some sublineages have all four significant highly destabilizing mutations. Such sublineages are BA.1 (G446S, E484A, T95I, and D614G), BA.2 (H655Y, Q493R, G493S, and D614G), BA.4 (N501Y, Y505H, N969K, and D614G), and BA.2.75 (Q454H, T547K, N764K, D614G and G446S). Finally, from the mutation stability prediction through ΔΔG, we observed that BA.1 and BA.4 had two destabilizing and two stabilizing mutations. Similarly, BA.2, BA.5, and BA.2.12.1 have one destabilizing and three stabilizing mutations. However, all four mutations in BA.2.75 are stabilizing mutations. CONCLUSIONS: Our molecular phylogenetic studies provided a deeper understanding of the microevolution of sublineages and the creation of Omicron. Similarly, this study might help scientists develop pan-coronavirus vaccines that consider their mutational properties.

4.
mBio ; 12(4): e0114021, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1381157

ABSTRACT

The recent emergence of multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant concern for public health worldwide. New variants have been classified either as variants of concern (VOCs) or variants of interest (VOIs) by the CDC (USA) and WHO. The VOCs include lineages such as B.1.1.7 (20I/501Y.V1 variant), P.1 (20J/501Y.V3 variant), B.1.351 (20H/501Y.V2 variant), and B.1.617.2. In contrast, the VOI category includes B.1.525, B.1.526, P.2, and B.1.427/B.1.429. The WHO provided the alert for last two variants (P.2 and B.1.427/B.1.429) and labeled them for further monitoring. As per the WHO, these variants can be reclassified due to their status at a particular time. At the same time, the CDC (USA) has marked these two variants as VOIs up through today. This article analyzes the evolutionary patterns of all these emerging variants, as well as their geographical distributions and transmission patterns, including the circulating frequency, entropy diversity, and mutational event diversity throughout the genomes of all SARS-CoV-2 lineages. The transmission pattern was observed highest in the B.1.1.7 lineage. Our frequency evaluation found that this lineage achieved 100% frequency in early October 2020. We also critically evaluated the above emerging variants mutational landscape and significant spike protein mutations (E484K, K417T/N, N501Y, and D614G) impacting public health. Finally, the effectiveness of vaccines against newly SARS-CoV-2 variants was also analyzed. IMPORTANCE Irrespective of the aggressive vaccination drive, the newly emerging multiple SARS-CoV-2 variants are causing havoc in several countries. As per the CDC (USA) and WHO, the VOCs include the B.1.1.7, P.1, B.1.351, and B.1.617.2 lineages, while the VOIs include the B.1.525, B.1.526, P.2, and B.1.427/B.1.429 lineages. This study analyzed the evolutionary patterns, geographical distributions and transmission patterns, circulating frequency, entropy diversity, and mutational event diversity throughout the genome of significant SARS-CoV-2 lineages. A higher transmission pattern was observed for the B.1.1.7 variant. The study also evaluated the mutational landscape and important spike protein mutations (E484K, K417T/N, N501Y, and D614G) of all of the above variants. Finally, a survey was performed on the efficacy of vaccines against these variants from the previously published literature. The results presented in this article will help design future countrywide pandemic planning strategies for the emerging variants, next-generation vaccine development using alternative wild-type antigens and significant viral antigens, and immediate planning for ongoing vaccination programs worldwide.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Biological Evolution , COVID-19/immunology , COVID-19/pathology , Evolution, Molecular , Genome, Viral/genetics , Humans , Phylogeny , Public Health , Spike Glycoprotein, Coronavirus/genetics
5.
Expert Rev Proteomics ; 17(9): 633-638, 2020 09.
Article in English | MEDLINE | ID: covidwho-883035

ABSTRACT

INTRODUCTION: The spike (S) of SARS coronavirus 2 (SARS-CoV-2) engages angiotensin-converting enzyme 2 (ACE2) on a host cell to trigger viral-cell membrane fusion and infection. The extracellular region of ACE2 can be administered as a soluble decoy to compete for binding sites on the receptor-binding domain (RBD) of S, but it has only moderate affinity and efficacy. The RBD, which is targeted by neutralizing antibodies, may also change and adapt through mutation as SARS-CoV-2 becomes endemic, posing challenges for therapeutic and vaccine development. AREAS COVERED: Deep mutagenesis is a Big Data approach to characterizing sequence variants. A deep mutational scan of ACE2 expressed on human cells identified mutations that increase S affinity and guided the engineering of a potent and broad soluble receptor decoy. A deep mutational scan of the RBD displayed on the surface of yeast has revealed residues tolerant of mutational changes that may act as a source for drug resistance and antigenic drift. EXPERT OPINION: Deep mutagenesis requires a selection of diverse sequence variants; an in vitro evolution experiment that is tracked with next-generation sequencing. The choice of expression system, diversity of the variant library and selection strategy have important consequences for data quality and interpretation.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , Mutagenesis , Mutation , Protein Interaction Domains and Motifs
6.
Cell Rep ; 33(5): 108352, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-880417

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving. Prior studies focused on high-case-density locations, such as the northern and western metropolitan areas of the United States. This study demonstrates continued SARS-CoV-2 evolution in a suburban southern region of the United States by high-density amplicon sequencing of symptomatic cases. 57% of strains carry the spike D614G variant, which is associated with higher genome copy numbers, and its prevalence expands with time. Four strains carry a deletion in a predicted stem loop of the 3' UTR. The data are consistent with community spread within local populations and the larger continental United States. The data instill confidence in current testing sensitivity and validate "testing by sequencing" as an option to uncover cases, particularly nonstandard coronavirus disease 2019 (COVID-19) clinical presentations. This study contributes to the understanding of COVID-19 through an extensive set of genomes from a non-urban setting and informs vaccine design by defining D614G as a dominant and emergent SARS-CoV-2 isolate in the United States.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/genetics , COVID-19 , High-Throughput Nucleotide Sequencing , Humans , Pandemics , Phylogeny , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL